Can LLMs Deceive CLIP? Benchmarking Adversarial Compositionality of Pre-trained Multimodal Representation via Text Updates

(* Equal Contribution) Jaewoo Ahn^{*}, Heeseung Yun^{*}, Dayoon Ko, Gunhee Kim

Intro: Pre-trained Multimodal Representations

- They encode rich information from **different modalities**
 - Cross-modality
 - *Image-Language*: CLIP, SigLIP, BLIP, ...
 - *Video-Language*: VideoCLIP, Frozen in Time, ...
 - Audio-Language: CLAP, ...
 - Multimodality
 - {Language, Video, Audio, Depth, Thermal, IMU}-Image: ImageBind, ...
 - {Video, Audio, Depth, Thermal}-Language: LanguageBind, ...
- Widespread applications across
 - retrieval

. . .

- generation
- reward modeling

(image credit: LanguageBind)

Intro: Compositional Vulnerability

- Contrary to the belief, these representations are known to be brittle
 - Intuitively exemplified by **compounding text elements**
 - e.g., CLIP got confused by simple negation or object swapping
 - Usually explored in *vision-language compositionality*^[1,2,3] domain

A man sitting on a bench next to a horse

(Negation) A man not sitting on a bench next to a horse
(Swap) A man sitting on a horse next to a bench
(Replace) A man standing on a bench next to a horse
(Add) A man sitting on a bench next to a horse, while drinking a glass of water

[1] Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality, CVPR 2022
 [2] Ma et al., CREPE: Can Vision-Language Foundation Models Reason Compositionally?, CVPR 2023
 [3] Bansal et al., VideoCon: Robust Video-Language Alignment via Contrast Captions, CVPR 2024

Motivation: "Diverse" Compositional Vulnerabilities

- Existing studies are limited to specific modalities
 - (Mostly) Image-Language compositionality [1]
 - Video-Language compositionality [2]
 - (Few) Audio-Language compositionality [3]
- They usually assume specific scenarios (negation, swap, ...)

→ Comprehensive understanding of **diverse** compositional vulnerabilities, **without assuming specific scenarios**, remain an open challenge

[1] Yuksekgonul et al., When and why vision-language models behave like bags-of-words, and what to do about it?, ICLR 2023
 [2] Park et al., Exposing the Limits of Video-Text Models through Contrast Sets, NAACL 2022
 [3] Ghosh et al., CompA: Addressing the Gap in Compositional Reasoning in Audio-Language Models, ICLR 2024

The MAC Benchmark

- We propose Multimodal Adversarial Compositionality (MAC) benchmark
 - Given multimodal data pairs (e.g., image-caption)
 - **1. Generate** deceptive captions (*via rule-based, LLM, etc*)
 - 2. Evaluate whether generated captions successfully deceive target representations
 - Sample-wise Eval
 - Group-wise Eval

The MAC Benchmark: Problem Definition

- 1. Generation
 - We use text updates due to modality-agnostic assessment
 - Given a set of paired data $D = (t_i, x_i)_{i=1}^{M_D}$, we aim to generate a set of adversarial text $\{\widetilde{t_i}\}_{i=1}^{M_D}$ that deceives a target representation f, which encodes both t_i and x_i into embeddings $y_{t_i}, y_{x_i} = f(t_i, x_i) \in \mathbf{R}^d$
 - Two key components
 - Adversarial sample "generator" g produces N samples $\{\tilde{t}_i^n\}_{n=1}^N$
 - Sample "filterer" h identifies a single \tilde{t}_i from N candidates

The MAC Benchmark: Problem Definition

- 2. Evaluation
 - Sample-wise Deception Evaluation
 - **1.** Cross-modal criterion (s_i^c): Generated sample should achieve the intended <u>attack</u>
 - **2. Uni-modal criterion (** s_i^u **)**: Meaningful <u>semantic distinction</u> btw generated & original text
 - **3. Distance criterion** (s_i^d) : Only limited lexical deviation from the original sample
 - **4.** Auxiliary criterion (s_i^a): Whether a generated sample <u>follows</u> a set of predefined <u>rules</u>

In total, the attack success rate (ASR) R is

$$R = \frac{1}{M_D} \sum_i (s_i^c, s_i^u, s_i^d, s_i^a)$$

The MAC Benchmark: Problem Definition

- 2. Evaluation
 - Group-wise Diversity Evaluation
 - Another crucial criterion? \rightarrow **Diversity**
 - Repeated & similar attack is easily defendable & lacks generalizability
 - First, construct a set of "attribute-enhanced token" e_i^j , defined as OP_POS_LEMMA
 - Using a set of tokens, compute **entropy** $H = -\sum_j p_j \log p_j$
 - Additionally, we use **distinct-1** = $\frac{\# \text{ unique attribute-enhanced tokens}}{\# \text{ all attribute-enhanced tokens}}$

The MAC Benchmark: Overall

- Key advantages
 - Modality-agnostic: Applied to any formats (image, video, audio)
 - Leaderboard: Existing compositionality frameworks can be consistently compared
 - Comprehensive eval: Assess both deception and attack diversity

Approach: Motivation

- Among diverse generators g, we prioritize LLM-based methods
 - Rule-based
 - produce nonsensical & non-fluent text
 - Human-based
 - difficult to scale
 - LLM-based
 - generate fluent text at scale
 - Recent studies adopted LLM-based > Rule & Human-based

Met	hod	Modality	Generation	Crossmodal	Diversity
RoCC	OCO ^[1]		Rule-based	\checkmark	
Winog	ound ^[2]		Human	\checkmark	
Sugar	Crepe ^[3]		ChatGPT	\checkmark	
VIOI	LIN ^[4]		Human	\checkmark	
Video	Con ^[5]		PaLM-2	\checkmark	
Com	pA ^[6]	◀))	GPT-4	\checkmark	
M	AC ()) Llama3-8B	\checkmark	\checkmark

[1] Park et al., RoCOCO: Robustness Benchmark of MS-COCO to Stress-Test Image-Text Matching Models, ECCV 2024 Workshop

- [2] Thrush et al., Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality, CVPR 2022
- [3] Hsieh et al., SugarCrepe: Fixing Hackable Benchmarks for Vision-Language Compositionality, NeurIPS 2023
- [4] Liu et al., Violin: A Large-Scale Dataset for Video-and-Language Inference, CVPR 2020
- [5] Park et al., VideoCon: Robust Video-Language Alignment via Contrast Captions, CVPR 2024
- [6] Ghosh et al., CompA: Addressing the Gap in Compositional Reasoning in Audio-Language Models, ICLR 2024

Approach: Preliminary

- Revealing Compositional Vulnerabilities via **Filtering** *f*
 - Multiple attempt (N > 1): effective than N = 1
 - Best-of-*N* sampling
 - Given N samples $\{\tilde{t}_i^n\}_{n=1}^N$, sample deceptive one first; otherwise randomly sample

$$\begin{split} T_i &= \big\{ \tilde{t}_i^n \big| \big(s_i^c \cdot s_i^u \cdot s_i^d \cdot s_i^a \big) (\tilde{t}_i^n, t_i, x_i) = 1 \big\}, \\ \tilde{t}_i &\sim \begin{cases} \text{Uniform}(T_i), & \text{if } T_i \neq \emptyset, \\ \text{Uniform}(\{\tilde{t}_i^n\}_{n=1}^N), & \text{otherwise.} \end{cases} \end{split}$$

- Pros: ASR ↑
- Cons:
 - computational cost scales linearly with *N*
 - Larger *N* masks true effectiveness of adversarial strategies (*i.e.*, brute-force)

Approach: Self-training

- We propose a learnable method for the first time
 - Given the absence of ground-truth, we employ **self-training**
 - or rejection sampling fine-tuning (RFT)
 - From the training set $D_{\text{train}} = (t_i, x_i)_{i=1}^{M_{D_{\text{train}}}}$,
 - We first generate & filter samples $\{\tilde{t}_i^n\}_{n=1}^N$ using best-of-N sampling
 - Then only use $M_{\widehat{D}}$ successful adversarial samples to train the model

$$\{\tilde{t}_i\}_{n=1}^{M_{\widehat{D}}} = \{\tilde{t}_i^n | s_i^c \cdot s_i^u \cdot s_i^d \cdot s_i^a = 1\},\$$
$$\mathcal{L} = -\frac{1}{M_{\widehat{D}}} \sum_i \sum_j \log g(\tilde{t}_{i,j} | \tilde{t}_{i,$$

+ To further enhance ASR, we use large-N distilled self-training

Approach: "Diversity-promoting" Self-training

- Despite high ASR, naïve self-training decreases diversity
- To enhance diversity:
 - Introduce Gibbs sampling-based train data selection
 - Motivation: Iteratively selects samples that maximizes diversity

Experiments: Evaluation Protocol

- Target representations: CLIP, LanguageBind
 - + SigLIP, NegCLIP, BLIP, CLAP, LLaVA
- Source datasets: MS-COCO (image), MSRVTT (video), AudioCaps (audio)
- Generator LLM: Llama-3.1-8B
 - Prompt version
 - *deceptive-specific*: *replace*, *swap*, and *add* operations
 - *deceptive-general* (default): no constraints
- Evalulation metrics
 - Sample-wise: ASR (%)
 - Group-wise: Diversity (H)

Experiments: Results (1)

- Existing methods
 - Single modality
- ASR vs. Diversity
- ASR: N = 4 > N = 1
- Ablation
 - + Self-train
 - ASR ↑ (+68% on avg)
 - Reduce diversity
 - + Large-*N* Distilled
 - Further ASR ↑
 - Reduce diversity
 - + Diversity-Promoted
 - Pareto front in ASR-diversity

Method	Image (CLIP/COCO)		Video (LB/MSRVTT)		Audio (LB/AudioCaps)	
	ASR (%)	Diversity (H)	ASR (%)	Diversity (H)	ASR (%)	Diversity (H)
N = 1						
RoCOCO _{rand-voc} a	1.99	<u>7.64</u>	-	-	-	-
RoCOCO _{Danger}	7.88	4.45	-	-	-	-
RoCOCO _{same-concept}	5.29	7.10	-	-	-	-
RoCOCOdiff-concept	2.75	7.13	-	-	-	-
SugarCrepe	2.40	7.31	-	-	-	-
VideoCon	-	-	7.10	6.70	-	-
Deceptive-General Prompt (zero-shot)	6.88	7.56	7.70	6.81	10.47	<u>6.57</u>
N = 4						
SeeTrue	23.33	7.17	-	-	-	-
VFC	-	-	36.90	5.93	-	-
CompA	-	-	-	-	5.76	6.01
(1) Deceptive-General Prompt (zero-shot)	19.19	7.57	24.80	6.81	29.02	6.57
(2): (1) + Self-Train	34.64	7.51	39.70	<u>6.90</u>	47.35	6.47
(3): (2) + Large- N Distilled	<u>42.03</u>	7.45	<u>44.20</u>	6.84	<u>51.57</u>	6.51
(4): (3) + Diversity-Promoted (ours)	42.10	7.75	45.60	7.13	52.87	6.87

Experiments: Results (2)

- Transferability across representations
 - High transferability, exceeding the best performing baseline (23.33)
 - Performance gains from self-training: 2.1x improvements

ASR (%)	CLIP	SigLIP	NegCLIP	BLIP
CLIP	42.10	28.63	24.84	25.25
	(+22.91)	(+15.68)	(+12.71)	(+14.13)
SigLIP	29.37	41.04	23.84	25.01
	(+16.13)	(+21.32)	(+12.17)	(+13.76)
NegCLIP	25.40	23.63	40.81	23.77
	(+12.68)	(+11.47)	(+20.10)	(+12.33)
BLIP	19.84	19.11	18.02	32.50
	(+10.60)	(+10.04)	(+8.94)	(+17.80)

[Columns: source models for filtering

Rows: target models for evaluation

Numbers in parentheses: gain from ours vs. zero-shot]

Experiments: Analysis (1)

- Multi-round self-training
 - Further improves ASR, reaching saturation by 3rd round
 - Ours continuously improve diversity

Experiments: Analysis (2)

- Influence of N in large-N distilled self-training
 - Increasing N does not display a clear signal of saturation
 - Still, $\Delta ASR/\Delta N$ does $\rightarrow N = 64$ offers a reasonable balance

Experiments: Analysis (3)

- Human evaluation
 - Confirms reliability of evaluation of uni-modal criteria (s_i^u)

Experiments: Qualitative Examples

A lady walking in the rain carrying a pink umbrella

<u>Cross</u> <u>Uni</u> <u>Dist</u>

- (Zero-shot) A lady dancing in the rain carrying a pink umbrella
- (Self-train) A lady walking in the rain under a broken pink umbrella
- (Ours) A lady walking in the rain with her pink umbrella left behind

A person is looking at a camera during a wrestling event

- (Zero-shot) A person is intensely staring at a camera during a dramatic wrestling event
- (Self-train) A person is smiling at a camera during a wrestling event
- (Ours) A person is looking directly at the referee during a wrestling event

- (Zero-shot) The female is speaking with some rustling but the other voice is a male
- (Self-train) A female speaking with some rustling, followed by a male speaking
- (Ours) A female speaking with some rustling followed by the same female speaking again

Concluding Remarks

- MAC: Comprehensive testbed for evaluating compositional vulnerabilities
 - Evaluate ASR & diversity of LLM-generated outputs
 - Modality-agnostic assessment
- Diversity-promoted self-training
 - LLM-based self-training for MAC
 - Iterative RFT w/ diversity-promoting filtering: improve both ASR & diversity
- Potential extension of vulnerability analysis
 - Less-explored modalities (IMU, tactile, ...)

Thank you

- Code <u>https://github.com/ahnjaewoo/MAC</u>
- Paperhttps://arxiv.org/abs/2505.22943
- **Contact** <u>jaewoo.ahn@vision.snu.ac.kr</u>,

heeseung.yun@vision.snu.ac.kr