

Can LLMs Deceive CLIP? Benchmarking Adversarial Compositionality of Pre-trained Multimodal Representation via Text Updates

Jaewoo Ahn^{*} Heeseung Yun^{*} Dayoon Ko Gunhee Kim (* Equal contribution)

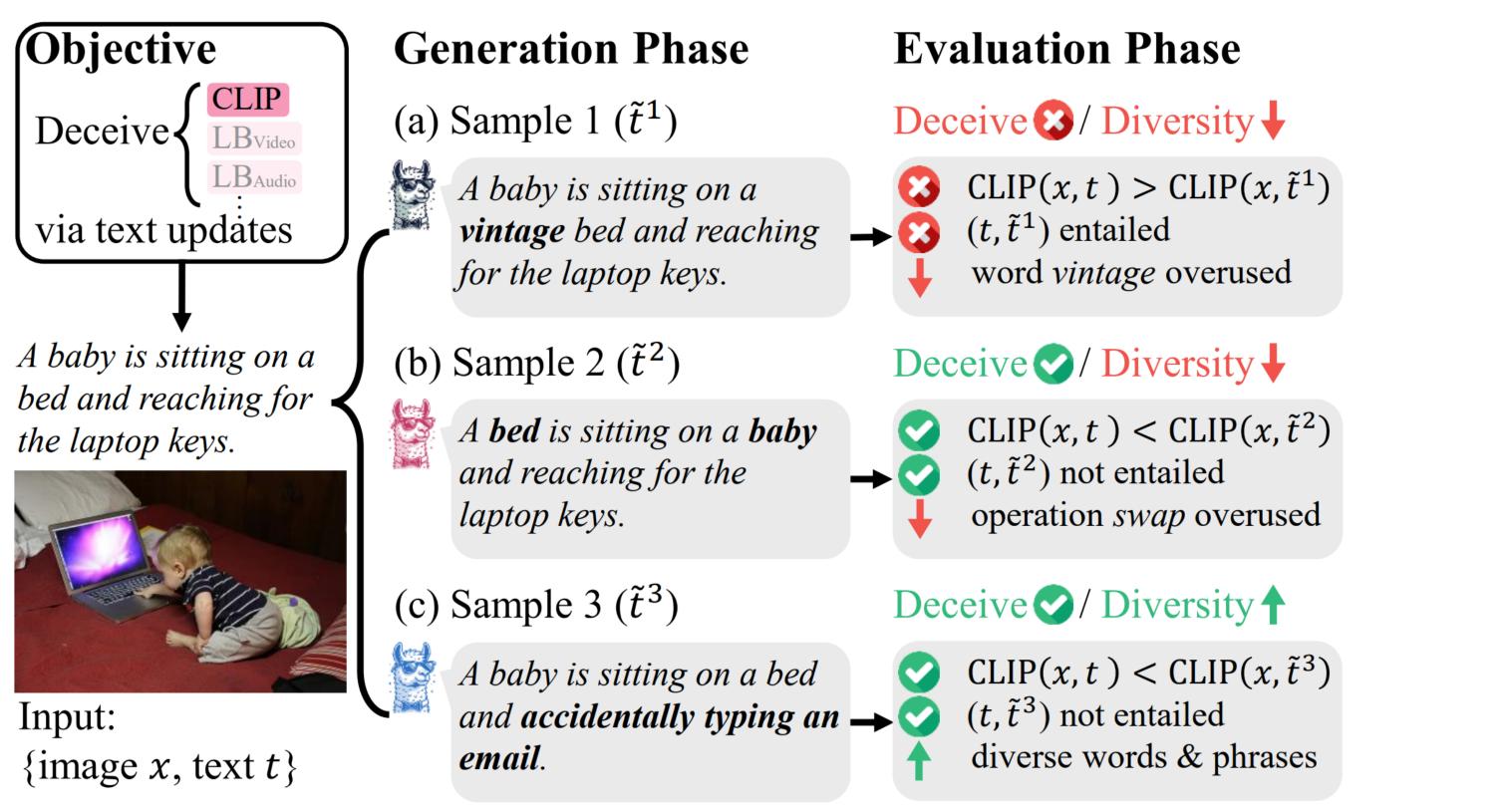
Yes, LLMs can deceive ANY "X-Language" Models ($\{ \square \square \downarrow \} \leftrightarrow \blacksquare$) and do so even better with diversity-promoting self-training!

Motivation

Pre-trained multimodal representations are everywhere, utilized in a wide range of downstream applications e.g., CLIP, CLAP, VideoCLIP, LanguageBind, etc.

However, they are known to be considerably **brittle**:

How to address such vulnerabilities in these embeddings in a modality-agnostic manner through the lens of <u>compositionality</u>⁺? (+ Structured relationship between words and elements)



- \rightarrow MAC (Multimodal Adversarial Compositionality)
- **Comparison with Existing Frameworks & Benchmarks** ullet

Method	Modality	Generation	Crossmodal	Diversity
FOIL ^[1]		Rule-based		
Winoground ^[2]		Human		
SugarCrepe ^[3]		ChatGPT		
VIOLIN ^[4]		Human		
VideoCon ^[5]		PaLM-2		
CompA ^[6]	()	GPT-4		
MAC		Llama3-8B		

Crossmodal: Evaluate whether a generated sample achieves the intended attack $((x_i, t_i) \prec (x_i, t_i))$ Diversity: Evaluate the diversity of a set of generated samples $(H = -\sum_{i} p_i \log p_i)$

Solution : ¹⁾**MAC &** ²⁾**Diversity-prompting Self-training**

Cross

Unı

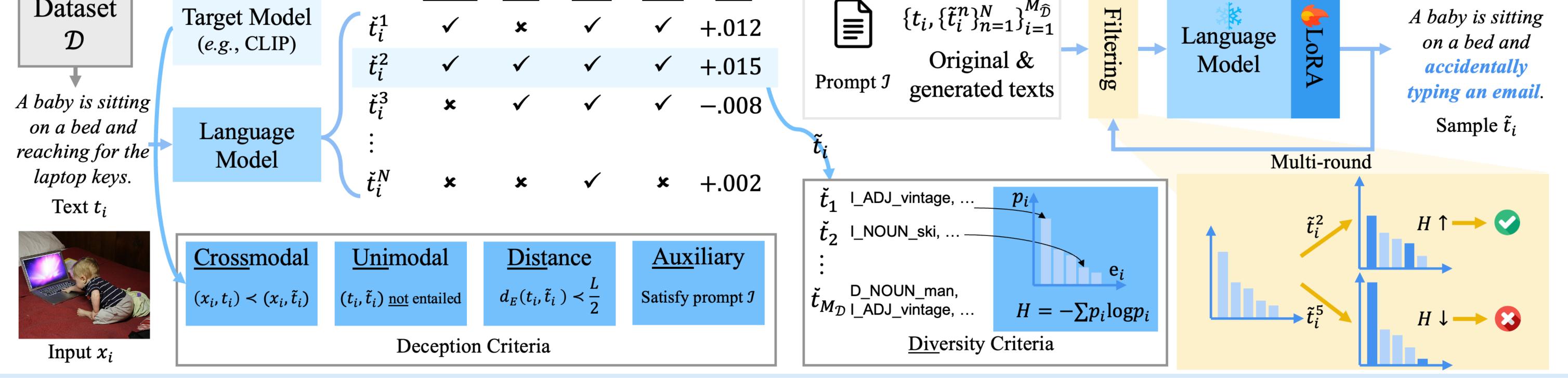
Dist

Aux

¹⁾Modality-agnostic comprehensive eval & ²⁾Self-train + Large-N distilled + Gibbs sampling-based diverse train data selection

Div

Dataset	Targ



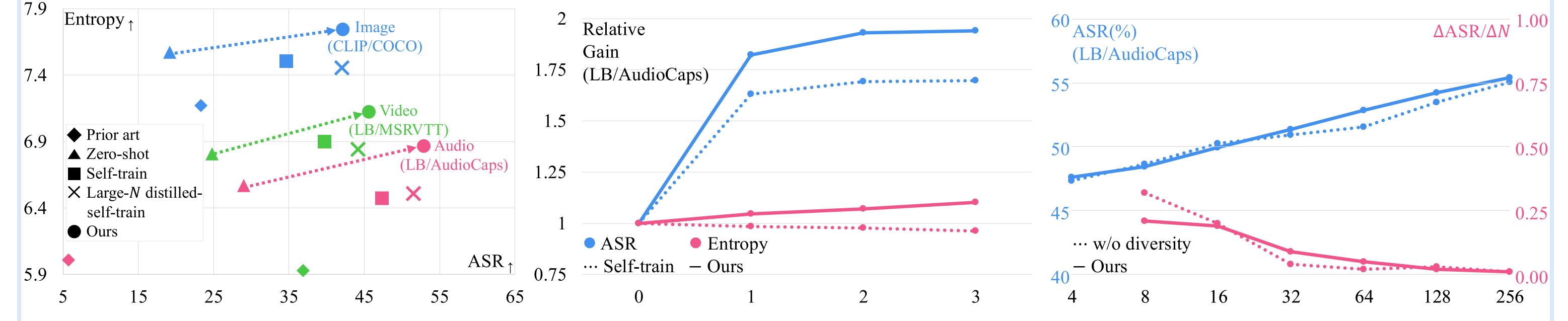
Experiments

Comparison with Prior Arts:

Ours enhance both ASR & diversity

Influence of Self-training Iterations:

Ours further improve ASR & diversity



female speaking

Qualitative Examples

<u>Cross Uni Dist</u>

- (Zero-shot) A person is intensely staring at a camera during a dramatic wrestling event
- (Self-train) A person is smiling at a camera during a wrestling event
- A person is looking at a camera during *a wrestling event*
- (Ours) A person is looking directly at the referee during a wrestling event

Dist <u>Cross</u> <u>Uni</u> (Zero-shot) The female is speaking with some rustling but the other voice is a • male \mathbf{E} (Self-train) A female speaking with some rustling, followed by a male speaking A female speaking with some rustling (Ours) A female speaking with some rustling followed by the same female followed by another speaking again

Influence of Self-training Sample N:

N = 64 offers a reasonable balance

[1] Shekhar et al. Find one mismatch between image and language caption. ACL 2017. [2] Thrush et al. Probing vision and language models for visio-linguistic compositionality. CVPR 2022. [3] Hsieh et al. Fixing hackable benchmarks for vision-language compositionality. NeurIPS 2023.

[4] Liu et al. A large-scale dataset for video-and-language inference. CVPR 2020. [5] Bansal et al. Robust video-language alignment via contrast captions. CVPR 2024. [6] Ghosh et al. Addressing the gap in compositional reasoning in audio-language models. ICLR 2024.