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Can LLMs Deceive CLIP? Benchmarking Adversarial Compositionality of

Pre-trained Multimodal Representation via Text Updates
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Yes, LLMs can deceive ANY “X-Language” Models ({& @ <€)}-S)

and do so even better with diversity-promoting self-training!

Motivation

Pre-trained multimodal representations are everywhere,

utilized in a wide range of downstream applications
e.q., CLIP, CLAP, VideoCLIP, LanguageBind, etc.

However, they are known to be considerably brittle:

How to address such vulnerabilities in these embeddings
in @ modality-agnostic manner through the lens of

Egn ] +
composmonallty ? (+ Structured relationship between words and elements)

— MAC (Multimodal Adversarial Compositionality)

Objective Generation Phase Evaluation Phase + Comparison with Existing Frameworks & Benchmarks
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Solution : Y"MAC & ?)Diversity-prompting Self-training

YModality-agnostic comprehensive eval & 2)Self-train + Large-N distilled + Gibbs sampling-based diverse train data selection
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Experiments

Comparison with Prior Arts:
Ours enhance both ASR & diversity

Influence of Self-training lterations:
Ours further improve ASR & diversity

Influence of Self-training Sample N:
N = 64 offers a reasonable balance
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Qualitative Examples

B Cross Uni Dist ‘

@ € @ (Zero-shot) A person 1s intensely staring at a camera during a dramatic
wrestling event

{ © © O (Self-train) A person is smiling at a camera during a wrestling event

Cross Uni Dist
QS ® O (Zero-shot) The female 1s speaking with some rustling but the other voice is a
male
0O O O (Self-train) A female speaking with some rustling, followed by a male speaking

A female speaking
A person is looking with some rustling

& © @ (Ours) A person is looking directly at the referee during a wrestling event & @ O (Ours) A female speaking with some rustling followed by the same female

at a came.m during followed by anofher speaking again
a wrestling event female speaking
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