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Yes, LLMs can deceive ANY “X-Language” Models ({            }     )
 and do so even better with diversity-promoting self-training!
Motivation

  Pre-trained multimodal representations are everywhere,
  utilized in a wide range of downstream applications
    e.g., CLIP, CLAP, VideoCLIP, LanguageBind, etc.

  However, they are known to be considerably brittle:

How to address such vulnerabilities in these embeddings
in a modality-agnostic manner through the lens of 
compositionality+?  (+ Structured relationship between words and elements)

→ MAC (Multimodal Adversarial Compositionality)

Method Modality Generation Crossmodal Diversity

FOIL[1] Rule-based

Winoground[2] Human

SugarCrepe[3] ChatGPT

VIOLIN[4] Human

VideoCon[5] PaLM-2

CompA[6] GPT-4

MAC Llama3-8B

Solution : 1)MAC & 2)Diversity-prompting Self-training
  1)Modality-agnostic comprehensive eval & 2)Self-train + Large-𝑁 distilled + Gibbs sampling-based diverse train data selection
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A person is looking 
at a camera during 
a wrestling event

(Zero-shot) A person is intensely staring at a camera during a dramatic 
wrestling event
(Self-train) A person is smiling at a camera during a wrestling event

(Ours) A person is looking directly at the referee during a wrestling event

(Zero-shot) The female is speaking with some rustling but the other voice is a 
male
(Self-train) A female speaking with some rustling, followed by a male speaking

(Ours) A female speaking with some rustling followed by the same female 
speaking again

A female speaking 
with some rustling 

followed by another 
female speaking

Cross Uni Dist Cross Uni Dist

Qualitative Examples

Comparison with Prior Arts:
Ours enhance both ASR & diversity

Influence of Self-training Iterations:
Ours further improve ASR & diversity

Influence of Self-training Sample 𝑵:
𝑁 = 64 offers a reasonable balance
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•  Comparison with Existing Frameworks & Benchmarks

Jaewoo Heeseung Code

Crossmodal: Evaluate whether a generated sample achieves the intended attack ( 𝑥𝑖, 𝑡𝑖 ≺ (𝑥𝑖, ǁ𝑡𝑖))
Diversity: Evaluate the diversity of a set of generated samples (𝐻 = −σ𝑗 𝑝𝑗 log 𝑝𝑗)


